一、实验目的:
1、掌握用乳液聚合法制备高分子材料的一般原理和合成方法;
2、了解目标乳合物的设计原理。 二、实验原理(概述):
2、了解目标乳合物的设计原理。 二、实验原理(概述):
乳液聚合是以水为连续相(分散剂),在表面活性剂(乳化剂)存在下,使聚合反应发生在由乳化剂形成的乳胶粒内部(即表面活性剂形成的胶束作为微反应器),制备高分子材料的一种方法。
目前,因为在世界范围内采用乳液聚合法制备大量的、各种类型的乳液聚合物和聚合物乳液产品,因此乳液聚合被广泛应用于各个技术领域,成为不可缺少的材料或工作物质。特别是人们环境保护意识的加强,乳液聚合技术已成为制备“环境友好材料”的主要方法。在工业生产中有多种用途:
(1)用乳液聚合法可大量生产合成橡胶如丁苯橡胶、丁腈橡胶、氯丁橡胶、聚丙烯酸酯橡胶等。
(2)用乳液聚合法生产合成塑料、合成树脂。如聚氯乙烯树脂、树脂、聚四氯乙烯树脂、聚丙烯酸树脂等。
(2)用乳液聚合法生产合成塑料、合成树脂。如聚氯乙烯树脂、树脂、聚四氯乙烯树脂、聚丙烯酸树脂等。
(3)用乳液聚合生产各种用途的聚合物乳液,如各种粘合剂(聚醋酸乙烯脂乳液—白胶等)、涂料(如建筑涂料、金属涂料、木制器涂装涂料等)。
乳液聚合技术较本体聚合、溶液聚合、悬浮聚合相比较,有许多重要特点、优点,既可制备高分子量的聚合物,又有高的聚合反应速率。反应体系易散热,有利于聚合反应的控制。生产设备和工艺简单,操作方便,灵活性大,代表了环境保护技术的发展方向,很多场合下,聚合物乳液可直接利用。因此,近年来乳液聚合技术发展很快,特别是在聚合技术上派生、发展了多种新技术、新方法。
乳液聚合体系主要有四大组分:单体、分散介层(水)、乳化剂、引发剂,其次还有用了pH调节并改善乳液流动性的电解层,pH调节用的中和剂等。依据反应单体与反应性质,来选用不同的乳化剂。 乳化剂是决定乳液稳定性的最主要因素,对反应速率、乳液粘度、胶粒尺寸等也有很主要的作用。乳化剂的选择除单体要求的种类外,一般以体系要求的HLB值决定其配比和用量,而且多以非离子型与离子型乳化剂复配,常用的乳化剂如下:
用于乳液聚合的引发剂主要是以过氧化氢为母体的衍生物,如过硫酸铵(NH4)2S2O8、过硫酸钾K2S2O8 、有机过氧化氢,对某些体系,还可采用其他热分解引发剂如芳基偶氮氨基化合物等。
经典的乳液聚合物工艺的定性理论
(用以描述乳液聚合体系中各种物料所处的状态及它们之间的相互影响、相互作用和相互转化规律)将乳液聚合过程分为四个阶段:
分散阶段:乳化剂在分散相(水)中形成胶束:加入部分单体后,在搅拌作用下,部分形成单体珠滴、部分增溶在乳化剂形成的胶束中或溶解在水相中。乳化剂、单体化水相、单体珠滴和胶束之间建立动态平衡。
阶段Ⅰ(成核阶段):水溶性引发剂加入到体系中后,在反应温度下引发剂在水相中开始分解出初始自由基,或扩散到胶束中或在水相引发聚合,或扩散到单体珠滴中。无论那种情况都可引发单体聚合形成乳胶粒。
阶段Ⅰ(成核阶段):水溶性引发剂加入到体系中后,在反应温度下引发剂在水相中开始分解出初始自由基,或扩散到胶束中或在水相引发聚合,或扩散到单体珠滴中。无论那种情况都可引发单体聚合形成乳胶粒。
在阶段Ⅰ,乳化剂有四个去处,即形成胶束、吸附在乳胶粒表面上、吸附在单体珠滴表面上及溶解在水中。单体也有四个去向,即形成单体珠滴、分布在乳胶粒中、分布在增溶胶束中,或溶解在水中,此时乳化剂和单体在水相、单体珠滴、乳胶粒和胶束之间建立动态平衡,直到胶束耗尽后,标志阶段Ⅰ结束。 阶段Ⅱ(乳胶粒长大阶段):
聚合反应发生在乳胶粒中,逐渐加入的单体形成单体珠滴,单体由单体珠滴通过水相扩散到乳胶粒中,在其中进行聚合反应,使乳胶粒长大,此时,乳化剂和导体在乳胶粒、水相和单体珠滴间建立动态平衡。单体珠滴消失。标志阶段Ⅱ结束。
阶段Ⅲ(聚合反应完成阶段):在该阶段,胶束和单体珠滴都不见了。绝大多数未反应的单体集中在乳胶粒内部,只有极少数的单体溶解在水相中,单体和乳化剂在水相和乳胶粒之间建立动态平衡。水相中的引发剂分解出自由基,扩散到乳胶粒中,在乳胶粒中引发聚合,使乳胶粒中的单体逐渐降低。使单体转化率达到最大至反应结束。
正是乳胶聚合的定性理论决定了聚合反应反应严格的操作步骤。